首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1483篇
  免费   87篇
  2023年   14篇
  2022年   20篇
  2021年   37篇
  2020年   35篇
  2019年   36篇
  2018年   53篇
  2017年   50篇
  2016年   61篇
  2015年   75篇
  2014年   88篇
  2013年   116篇
  2012年   129篇
  2011年   126篇
  2010年   50篇
  2009年   45篇
  2008年   73篇
  2007年   69篇
  2006年   60篇
  2005年   57篇
  2004年   55篇
  2003年   49篇
  2002年   44篇
  2001年   36篇
  2000年   24篇
  1999年   14篇
  1998年   10篇
  1997年   9篇
  1996年   7篇
  1995年   8篇
  1994年   3篇
  1993年   3篇
  1992年   9篇
  1991年   8篇
  1990年   4篇
  1989年   11篇
  1988年   8篇
  1986年   8篇
  1985年   6篇
  1984年   6篇
  1983年   4篇
  1979年   4篇
  1978年   3篇
  1976年   3篇
  1974年   3篇
  1970年   3篇
  1968年   3篇
  1967年   2篇
  1955年   2篇
  1933年   3篇
  1931年   2篇
排序方式: 共有1570条查询结果,搜索用时 31 毫秒
61.
The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system.  相似文献   
62.
In many parts of the world, replacement of natural grasslands by woody plants has resulted in a decrease of pasture areas and in habitat loss for a variety of animal species, including amphibians. Wetlands are especially susceptible to invasive plants, both native and exotic, but the effects of such invasions on animal assemblages remain poorly understood. Here, we present information on the impact of selected environmental variables, especially coverage by the native shrub Combretum laxum Jacq., on the structure of an anuran assemblage in the Pantanal, a huge flood‐pulsed South American wetland. Anurans were surveyed during the rainy season in 17 plots, which differed in extent of C. laxum coverage, leaf litter volume, soil moisture and distance to permanently wet areas. Effects of these environmental variables on the species number, relative abundance and composition of the anuran assemblage were evaluated using multivariate statistical analyses. We captured 1203 anurans, of 21 species from four families. Both the number of species and the relative abundance of anurans were lower in plots with greater C. laxum coverage, which also influenced anuran species composition. Number of species was highest in plots located closest to permanently wet areas, which provide protection from desiccation and other resources during the Pantanal dry season, and so could be considered source areas of anurans. While many anuran species were negatively affected by the homogenization of the landscape caused by shrub encroachment, some seemed to be favoured in such circumstances. For these, dense shrub encroachment into natural grasslands may provide safer migratory routes to permanently wet habitats. Thus, at the mesoscale, a mosaic of areas with different levels of coverage by C. laxum (shrub islands) may aid anuran assemblages in the Pantanal wetlands, facilitating the maintenance of higher beta and gamma diversity.  相似文献   
63.

Background

Besides its role as a fuel source in intermediary metabolism, lactate has been considered a signaling molecule modulating lactate-sensitive genes involved in the regulation of skeletal muscle metabolism. Even though the flux of lactate is significantly high in the heart, its role on regulation of cardiac genes regulating lactate oxidation has not been clarified yet. We tested the hypothesis that lactate would increase cardiac levels of reactive oxygen species and up-regulate the expression of genes related to lactate oxidation complex.

Methods/Principal Findings

Isolated hearts from male adult Wistar rats were perfused with control, lactate or acetate (20mM) added Krebs-Henseleit solution during 120 min in modified Langendorff apparatus. Reactive oxygen species (O2 ●-/H2O2) levels, and NADH and NADPH oxidase activities (in enriched microsomal or plasmatic membranes, respectively) were evaluated by fluorimetry while SOD and catalase activities were evaluated by spectrophotometry. mRNA levels of lactate oxidation complex and energetic enzymes MCT1, MCT4, HK, LDH, PDH, CS, PGC1α and COXIV were quantified by real time RT-PCR. Mitochondrial DNA levels were also evaluated. Hemodynamic parameters were acquired during the experiment. The key findings of this work were that lactate elevated cardiac NADH oxidase activity but not NADPH activity. This response was associated with increased cardiac O2 ●-/H2O2 levels and up-regulation of MCT1, MCT4, LDH and PGC1α with no changes in HK, PDH, CS, COXIV mRNA levels and mitochondrial DNA levels. Lactate increased NRF-2 nuclear expression and SOD activity probably as counter-regulatory responses to increased O2 ●-/H2O2.

Conclusions

Our results provide evidence for lactate-induced up-regulation of lactate oxidation complex associated with increased NADH oxidase activity and cardiac O2 ●-/H2O2 driving to an anti-oxidant response. These results unveil lactate as an important signaling molecule regulating components of the lactate oxidation complex in cardiac muscle.  相似文献   
64.
Pancreatic β-cell apoptosis is a key feature of diabetes mellitus and the mitochondrial pathway of apoptosis is a major mediator of β-cell death. We presently evaluated the role of the myeloid cell leukemia sequence 1 (Mcl-1), an antiapoptotic protein of the Bcl-2 family, in β-cells following exposure to well-defined β-cell death effectors, for example, pro-inflammatory cytokines, palmitate and chemical endoplasmic reticulum (ER) stressors. All cytotoxic stresses rapidly and preferentially decreased Mcl-1 protein expression as compared with the late effect observed on the other antiapoptotic proteins, Bcl-2 and Bcl-xL. This was due to ER stress-mediated inhibition of translation through eIF2α phosphorylation for palmitate and ER stressors and through the combined action of translation inhibition and JNK activation for cytokines. Knocking down Mcl-1 using small interference RNAs increased apoptosis and caspase-3 cleavage induced by cytokines, palmitate or thapsigargin, whereas Mcl-1 overexpression partly prevented Bax translocation to the mitochondria, cytochrome c release, caspase-3 cleavage and apoptosis induced by the β-cell death effectors. Altogether, our data suggest that Mcl-1 downregulation is a crucial event leading to β-cell apoptosis and provide new insights into the mechanisms linking ER stress and the mitochondrial intrinsic pathway of apoptosis. Mcl-1 is therefore an attractive target for the design of new strategies in the treatment of diabetes.  相似文献   
65.
Sugarcane bagasse is used as a fuel in conventional bioethanol production, providing heat and power for the plant; therefore, the amount of surplus bagasse available for use as raw material for second generation bioethanol production is related to the energy consumption of the bioethanol production process. Pentoses and lignin, byproducts of the second generation bioethanol production process, may be used as fuels, increasing the amount of surplus bagasse. In this work, simulations of the integrated bioethanol production process from sugarcane, surplus bagasse and trash were carried out. Selected pre-treatment methods followed, or not, by a delignification step were evaluated. The amount of lignocellulosic materials available for hydrolysis in each configuration was calculated assuming that 50% of sugarcane trash is recovered from the field. An economic risk analysis was carried out; the best results for the integrated first and second generation ethanol production process were obtained for steam explosion pretreatment, high solids loading for hydrolysis and 24–48 h hydrolysis. The second generation ethanol production process must be improved (e.g., decreasing required investment, improving yields and developing pentose fermentation to ethanol) in order for the integrated process to be more economically competitive.  相似文献   
66.
A 24 full factorial design was used to identify the main effects and interactions of the initial medium pH, soybean flour concentration, temperature and orbital agitation speed on extracellular collagenase production by Penicillium aurantiogriseum URM4622. The most significant variables for collagenase production were soybean flour concentration and initial medium pH that had positive main effects, and temperature that had a negative one. Protein concentration in soybean flour revealed to be a significant factor for the production of a collagenase serine proteinase. The most favorable production conditions were found to be 0.75% soybean flour, pH 8.0, 200 rpm, and 28°C, which led to a collagenase activity of 164 U. The enzyme showed an optimum activity at 37°C and pH 9.0, was stable over wide ranges of pH and temperature (6.0 ∼ 10.0 and 25 ∼ 45°C, respectively) and was strongly inhibited by 10 mM phenylmethylsulphonylfluoride. The firstorder rate constants for collagenase inactivation in the crude extract, calculated from semi-log plots of the residual activity versus time, were used in Arrhenius and Eyring plots to estimate the main thermodynamic parameters of thermoinactivation (E* d = 107.4 kJ/mol and ΔH* d = 104.7 kJ/mol). The enzyme is probably an extracellular neutral serine collagenase effective on azocoll, gelatin and collagen decomposition.  相似文献   
67.
In the intraerythrocytic trophozoite stages of Plasmodium falciparum, the calcium-dependent cysteine protease calpain (Pf-calpain) has an important role in the parasite calcium modulation and cell development. We established specific conditions to follow by confocal microscopy and spectrofluorimetry measurements the intracellular activity of Pf-calpain in live cells. The catalytic activity was measured using the fluorogenic Z-Phe-Arg-MCA (where Z is carbobenzoxy and MCA is 4-methylcoumaryl-7-amide). The calmodulin inhibitor calmidazolium and the sarcoplasmic reticulum calcium ATPase inhibitor thapsigargin were used for modifications in the cytosolic calcium concentrations that persisted in the absence of extracellular calcium. The observed calcium-dependent peptidase activity was greatly inhibited by specific cysteine protease inhibitor E-64 and by the selective calpain inhibitor ALLN (N-acetyl-l-leucyl-l-leucyl-l-norleucinal). Taken together, we observed that intracellular Pf-calpain can be selectively detected and is the main calcium-dependent protease in the intraerythrocytic stages of the parasite. The method described here can be helpful in cell metabolism studies and antimalarial drug screening.  相似文献   
68.
Insulin is a 6 kDa peptide hormone that activates several metabolic processes and cellular growth. Germination studies showed that insulin, vanadyl sulphate (an insulin mimetic compound), tyrphostin (an inhibitor of insulin receptor kinase activity), pinitol (a chiro inositol analogue) and glucose were able to accelerate Canavalia ensiformis (Jack bean) seedling radicle and epicotyl development. Immunofluorescence microscopy analysis showed that proteins binding to insulin, insulin receptor and phosphoserine antibodies are localized in an internal layer of the C. ensiformis seed coat. These results and others previously reported from our laboratory suggest that insulin, insulin receptor and phosphoserine proteins could be components of signalling pathways akin to those present in animals.  相似文献   
69.
70.
(?)-Cubebin (CUB), isolated from seeds of Piper cubeba, was used as starting material to obtain the derivatives (?)-hinokinin (HK) and (?)-O-benzyl cubebin (OBZ). Using paw edema as the experimental model and different chemical mediators (prostaglandin and dextran), it was observed that both derivatives were active in comparison with both negative (5% Tween® 80 in saline) and positive (indomethacin) controls. The highest reduction in the prostaglandin-induced edema was achieved by OBZ (66.0%), while HK caused a 59.2% reduction. Nonetheless, the dextran-induced paw edema was not significantly reduced by either of the derivatives (HK or OBZ), which inhibited edema formation by 18.3% and 3.5%, respectively, in contrast with the positive control, cyproheptadine, which reduced the edema by 56.0%. The docking analysis showed that OBZ presented the most stable ligand-receptor (COX-2 – cyclooxygenase-2) interaction in comparison with CUB and HK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号